Unsupervised Learning of Mutagenesis Molecules Structure Based on an Evolutionary-Based Features Selection in DARA
نویسندگان
چکیده
Abstrak The importance of selecting relevant features for data modeling has been recognized already in machine learning. This paper discusses the application of an evolutionary-based feature selection method in order to generate input data for unsupervised learning in DARA (Dynamic Aggregation of Relational Attributes). The feature selection process which is based on the evolutionary algorithm is applied in order to improve the descriptive accuracy of the DARA (Dynamic Aggregation of Relational Attributes) algorithm. The DARA algorithm is designed to summarize data stored in the non-target tables by clustering them into groups, where multiple records stored in non-target tables correspond to a single record stored in a target table. This paper addresses the issue of optimizing the feature selection process to select relevant set of features for the DARA algorithm by using an evolutionary algorithm, which includes the evaluation of several scoring measures used as fitness functions to find the best set of relevant features. The results show the unsupervised learning in DARA can be improved by selecting a set of relevant features based on the specified fitness function which includes the measures of the dispersion and purity of the clusters produced.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملAn Evolutionary Multi-objective Discretization based on Normalized Cut
Learning models and related results depend on the quality of the input data. If raw data is not properly cleaned and structured, the results are tending to be incorrect. Therefore, discretization as one of the preprocessing techniques plays an important role in learning processes. The most important challenge in the discretization process is to reduce the number of features’ values. This operat...
متن کامل